OneClassSVM

SVM(支持向量机)是一种用于检测异常的有效的技术。SVM通常与监督学习相关联,是一类对数据进行二元分类的广义线性分类器,其决策边界是对学习样本求解的最大边距超平面。

但是存在可以用于将异常识别为无监督问题(其中训练数据未被标记)的扩展(OneClassCVM)。算法学习软边界以便使用训练集对正常数据实例进行聚类,然后,使用测试实例,通过调整自身以识别落在学习区域之外的异常。根据使用情况,异常检测器的输出可以是数字标量值,用于过滤特定于域的阈值或文本标签(如二进制/多标签)。

One-Class SVM 是基于一类数据(正常数据)求超平面,对 SVM 算法中求解负样本最大间隔目标进行改造,进而完成非监督学习下的异常检测。可以理解为这是一个新颖值检测(Novelty Detection)算法,即在One-Class SVM 将所以与正常数据有一定区别的都当成新颖数据,而我们根据实际需要设定边界,才认为超出边界的数据为异常数据。


作者:名字太长显得比较长
来源:CSDN