深度置信网络(Deep Belief Networks)DBN算法是机器学习之神经网络的一种,既可以用于非监督学习,也可以用于监督学习。DBN是一个概率生成模型,与传统的判别模型的神经网络相对,生成模型是建立一个观察数据和标签之间的联合分布。通过训练其神经元间的权重,可以让整个神经网络按照最大概率来生成训练数据。

不仅可以使用DBN来识别特征、分类数据,还可以用它来生成数据。DBN算法是一种非常实用的学习算法,应用范围较广,扩展性也强,可应用于机器学习之手写字识别、语音识别和图像处理等领域。

来源:版权声明:本文为CSDN博主「夏天云子」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。